
Under review as submission to TMLR

Broadening the Scope of Graph Regression: Introducing A
Novel Dataset with Multiple Representation Settings

Anonymous authors
Paper under double-blind review

Abstract

Graph regression is a vital task across various domains, however, the majority of publicly
available datasets for graph regression are concentrated in the fields of chemistry, drug
discovery, and bioinformatics. This narrow focus on dataset availability restricts the devel-
opment and application of predictive models in other important areas. Here, we introduce
a novel graph regression dataset tailored to the domain of software performance prediction,
specifically focusing on estimating the execution time of source code. Accurately predict-
ing execution time is crucial for developers, as it provides early insights into the code’s
complexity. Furthermore, it also facilitates better decision-making in code optimization and
refactoring processes. Source code can be represented syntactically as trees and semantically
as graphs, capturing the relationships between different code components. In this work, we
integrate these two perspectives to create a unified graph representation of source code. We
present two versions of the dataset: RelSC (Relational Source Code), which incorporates
node features, and Multi-RelSC (Multi-Relational Source Code), which treats the graphs
as multi-relational, allowing nodes to be connected by multiple edges, each representing
a distinct semantic relationship. Finally, we apply various Graph Neural Network models
to assess their performance in this relatively unexplored task. Our findings demonstrate
the potential of these datasets to advance the field of graph regression, particularly in the
context of software performance prediction.

1 Introduction

Graph Neural Networks (GNNs)(Scarselli et al., 2008; Micheli, 2009) have demonstrated outstanding perfor-
mance in processing network data across various real-world applications, ranging from biology to recommen-
dation systems. Their ability to effectively model complex relationships between entities, capture structural
dependencies, and incorporate node and edge features has made GNNs an essential tool in a variety of
domains. High performance in GNNs is attributed not only to advancements in architectural design (Kipf
and Welling, 2016; Hamilton et al., 2017; Veličković et al., 2018; Gasteiger et al., 2018; Zhang and Chen,
2018; Wu et al., 2019; Zhang et al., 2021a; Lachi et al., 2024; Zaghen et al., 2024) but also to the availability
of publicly accessible benchmark datasets (Armstrong et al., 2013; Hu et al., 2020a; Morris et al., 2020;
Dwivedi et al., 2022; Zhiyao et al., 2024; Huang et al., 2024). These benchmarks have played a crucial role in
facilitating research progress by providing standardized datasets and tasks, enabling researchers to evaluate,
compare, and improve their models consistently.

However, while the availability of public datasets for node and graph classification has driven rapid advance-
ments across fields such as biology (Zhang et al., 2021b; Bongini et al., 2022), mobility (Jiang and Luo, 2022),
social networks Li et al. (2023), and recommendation systems Fan et al. (2019), the same is not true for
graph regression tasks. Public datasets for graph regression are predominantly concentrated in specific fields,
particularly in Chemistry and Drug Discovery Jiang et al. (2021). These datasets have been instrumental in
advancing GNN-based models for applications like molecular property prediction Wieder et al. (2020) and
drug-target interaction Zhang et al. (2022). Despite their utility, this narrow focus presents a significant
limitation: the exploration of graph regression in other domains remains largely underdeveloped due to the
lack of diverse, high-quality datasets.

1

Under review as submission to TMLR

This scarcity of benchmarks beyond Chemistry and Drug Discovery restricts researchers’ ability to fully
explore the potential of GNNs in graph regression tasks across other fields. Domains such as finance,
transportation, environmental modeling, and even social sciences could greatly benefit from graph regression
models, but the absence of appropriate datasets makes it challenging to develop, adapt, and evaluate these
models effectively. Addressing this gap is essential for expanding the applicability of GNNs to a broader
set of problems, enabling the development of more generalizable models, and pushing the boundaries of
graph-based machine learning.

In this paper, we introduce novel graph regression datasets for software performance prediction, specifically
focusing on execution time estimation. Accurate execution time prediction provides developers with early
insights into code complexity, aiding in optimization (Harrelson, 2017) and refactoring decisions (Lindon
et al., 2022; Biringa and Kul, 2024). Our datasets broaden the scope of graph regression tasks and serve
as valuable benchmarks for exploring GNN applications in software engineering. Source code is tradition-
ally represented using Abstract Syntax Trees (ASTs) (McCarthy, 1960; Neamtiu et al., 2005; Zhang et al.,
2019a; Shi et al., 2021; Samoaa et al., 2022a), Control Flow Graphs (CFGs) (Allen, 1970; Campanoni and
Crespi Reghizzi, 2009; Koppel et al., 2022; Mitra et al., 2023), and Data Flow Graphs (DFGs) (Dennis and
Misunas, 1974; Davis and Keller, 1982; Kavi et al., 1986; Xie et al., 2022), each capturing different aspects
of source code. Inspired by Samoaa et al. (2022b), we enhance ASTs by integrating structural and semantic
information from CFGs and DFGs, creating a more expressive representation of source code. To support
this methodology, we introduce multiple datasets designed for execution time estimation, each provided in
two versions. The first, RelSC, consists of relational graphs where nodes and edges encode execution-relevant
structural properties of Java programs. This extends the dataset introduced in Samoaa et al. (2022a) by
incorporating semantic node features, which were previously absent. The second, Multi-RelSC, consists of
multi-relational graphs where nodes are connected by multiple relationship types, capturing a more com-
prehensive view of source code interactions. Multi-relational graph regression datasets are scarce in the
literature, making this contribution particularly valuable. Our datasets enable more effective research on
graph-based execution time prediction in software engineering, fostering advancements in GNN applications
within the field.

2 Related Work

Graph regression dataset. Several open datasets have been released over the past decades, with a
predominant focus on Chemistry and Drug Discovery. For molecular property prediction, datasets such as
QM9 Wu et al. (2018) and ZINC Gómez-Bombarelli et al. (2018) are used to predict various properties
of small molecules. In the realm of solubility and free energy prediction, datasets like ESOL Li et al.
(2022) and Freesolv Mobley and Guthrie (2014) aim to forecast the solubility and free energy of molecules.
Similarly, Peptides-struct Dwivedi et al. (2022) is employed to predict aggregated 3D properties of peptides
at the graph level. PDBbind Liu et al. (2015) is focused on the study of interactions between proteins and
ligands. Toxicity and bioactivity prediction tasks utilize datasets such as ogbg-moltox21 Hu et al. (2020a)
and ogbg-moltoxcast Hu et al. (2020a) to assess molecular toxicity and bioactivity. Additionally, datasets like
ogbg-mollipo Hu et al. (2020a) are dedicated to lipophilicity prediction, while ogbg-molesol Hu et al. (2020a)
is used for solubility prediction. Furthermore, the work by Liu et al. Liu et al. (2022) utilizes monomers as
polymer graphs to predict properties such as the glass transition temperature. While significant progress has
been made in these domains, there is a growing need for comprehensive benchmarks and datasets in other
fields to further advance the state of graph regression tasks across diverse applications.

GNNs in software engineering. GNNs have become essential in software engineering, effectively mod-
eling the structured nature of source code (Šikić et al., 2022; Nguyen et al., 2022; Allamanis, 2022; Liu et al.,
2023). Prior work Allamanis et al. (2018); Guo et al. (2021); Jain et al. (2021) ASTs with semantic edges for
code clone detection. CFGs and DFGs have been successfully applied to vulnerability detection (Zhou et al.,
2019; Hin et al., 2022) and clone detection Zhang et al. (2019b), outperforming token-based methods (Li
et al., 2017; Russell et al., 2018). Recent studies Rafi et al. (2024) show that integrating multi-level graph rep-
resentations (ASTs, CFGs, DFGs) improves fault localization and automated program repair. These findings

2

Under review as submission to TMLR

highlight the versatility and effectiveness in capturing structural and semantic code properties, advancing
software engineering research.

Beyond Graph-Based Models. Machine learning and deep learning have long played a vital role in
software engineering. Transformer-based large language models (LLMs) excel in tasks like code generation
and defect prediction by leveraging vast pre-training corpora of source code and natural language (Feng et al.,
2020; Chen et al., 2021; Lachaux et al., 2021; Roziere et al., 2021). Unlike graph-based methods, these models
capture syntactic and semantic patterns without explicit graph structures, making them effective for code
completion, bug detection, and refactoring (Nijkamp et al., 2023; Wang et al., 2021). Additionally, traditional
machine learning and deep networks effectively model software runtime behavior by leveraging workload
parameters—key metrics such as CPU usage and memory consumption that characterize the performance and
resource demands of software workloads Laaber et al. (2021); Ha and Zhang (2019). These findings highlight
that AI-driven techniques, even beyond graph-centric approaches, remain powerful tools for optimizing
performance and enhancing software development.

3 Preliminaries

In this section, we introduce the foundational concepts essential for understanding the core contributions of
our work. Specifically, we present three key techniques for representing source code as graphs: the Abstract
Syntax Tree (AST), the Control Flow Graph (CFG), and the Data Flow Graph (DFG). These representations
form the basis for various program analysis methods and are critical for the discussions that follow.

3.1 Abstract Syntax Trees

ASTs McCarthy (1960) offer a hierarchical abstraction of source code, focusing on core programming con-
structs such as variables, operators, and control structures, while ignoring superficial syntactic details like
punctuation. Each node in an AST represents a construct from the source code, with edges defining relation-
ships based on the language’s syntax rules. The root typically represents the entire program, and the leaves
correspond to basic elements like literals or variable names Neamtiu et al. (2005); Samoaa et al. (2023). The
process of building an AST involves parsing the source code according to its grammar, creating a structured
representation that supports tasks such as code analysis, optimization, and refactoring Zhang et al. (2019a);
Shi et al. (2021); Samoaa et al. (2022a). ASTs are widely used in applications such as static analysis, bug
detection, and even machine learning-based techniques for code summarization and generation. To gain a
deeper understanding of ASTs, in Listing 1 we report a snippet of code and its AST representation is shown
in figure 1.

1 public static int factorial (int n) {
2 if (n <= 1) {
3 return 1;
4 } else {
5 return n * factorial (n - 1);
6 }
7 }

Listing 1: Simple example of Java source code.

Figure 1: Simplified abstract syntax tree (AST) represent-
ing the illustrative example in Listing 1.

3

Under review as submission to TMLR

3.2 Control Flow Graph (CFG)

Entry

If (n<=1)

return 1 return n*factorial(n-1)

Exit

True False

Figure 2: CFG of the method
presented in Listing 1

A Control Flow Graph (CFG) is a directed graph that models the ex-
ecution flow of a program. Formally, a CFG is defined as a tuple
GCF G = (V, E), where V represents a set of basic blocks—sequences of
statements with a single entry and exit point—and E denotes directed
edges that capture control flow transitions, such as sequential execution,
branches, and loops Allamanis et al. (2018). CFGs are widely used in
program analysis for tasks such as dead code elimination, path coverage
analysis Thomson (2021), vulnerability detection Li et al. (2018), and
code summarization Allamanis et al. (2018). A CFG includes a unique
entry node marking the program’s start and one or more exit nodes rep-
resenting termination points. Conditional statements introduce multiple
outgoing edges, while loops create cycles that model repeated execution.
Function calls may extend the CFG into an interprocedural graph, track-
ing function invocations and returns. This structured representation enables precise compiler optimizations,
program verification, and machine learning-based code analysis. Figure 2 illustrates the CFG of the ‘fac-
torial‘ method in Listing 1. Execution starts at the "Entry" node and proceeds to the conditional check at
"if(n ≤ 1)" (line 2). If true, execution moves to "return1" (line 3), terminating the function. Otherwise,
execution transitions to "n ∗ factorial(n − 1)" (line 5), where the recursive call occurs, generating a recursive
flow until the base case is reached. All execution paths ultimately converge at the "Exit" node, marking the
function’s termination. This CFG effectively captures the method’s branching logic and recursive structure,
illustrating how multiple activations of the function occur before reaching the final return statement.

3.3 Data Flow Graph (DFG)

n

Condition: (n<=1)

return 1 Operation: n*factorial(n-1)

Recursive Call

True False

Output: Result

Figure 3: DFG of the method
presented in Listing 1

A Data Flow Graph (DFG) is a directed graph that models the flow of data
within a program. Formally, a DFG is defined as a tuple GDF G = (V, E),
where V represents a set of nodes corresponding to variables or computa-
tions, and E denotes directed edges that capture data dependencies, such
as variable definitions and their subsequent uses. Unlike CFGs, which rep-
resent execution order, DFGs emphasize how values propagate through a
program, making them fundamental for static analysis, liveness analy-
sis, and dependency tracking Jiang et al. (2024). They have also been
widely applied in machine learning for code property prediction Hellen-
doorn et al. (2020) and vulnerability detection Li et al. (2018). A DFG
consists of nodes representing variable assignments, operations, and func-
tion inputs/outputs, with directed edges encoding data flow dependencies.
Expressions, arithmetic operations, and function calls contribute to these
dependencies, while loops introduce iterative data relationships, and con-

ditionals create multiple propagation paths. By explicitly modeling data flow, DFGs enable precise program
optimization, security analysis, and data-driven software engineering. Figure 3 illustrates the DFG of the
‘factorial‘ method in Listing 1. Execution begins at the input node (n), which is evaluated at the comparison
node (n ≤ 1). If the condition is true, the function returns 1, contributing a constant value node. Otherwise,
execution proceeds to compute n − 1, which is passed to the recursive call factorial(n − 1). The result of this
call is then multiplied by n, forming a data dependency between the recursive output and the final multipli-
cation operation. The computed result is then returned as the function’s output. By structuring program
execution around data dependencies, DFGs provide a comprehensive view of how values are computed and
used, making them essential for compiler optimizations, security verification, and machine learning-based
program analysis.

4

Under review as submission to TMLR

3.4 Graph Neural Network

Graph Neural Networks (GNNs) are a type of neural network architecture specifically designed for analyzing
graph-structured data. GNNs utilize a mechanism known as message passing, which allows for localized
computation across the graph (Gilmer et al., 2017). In essence, the feature vector of each node is iteratively
updated by incorporating information from its neighboring nodes. After l iterations, xl

v encodes both the
structural and attribute information from the l-hop neighborhood of node v.

More formally, the output of the l-th layer of a GNN is defined as:

xl
v = COMB(l)(xl−1

v , AGG(l)({xl−1
u , u ∈ N [v]})) (1)

Here, AGG(l) refers to the aggregation function that gathers features from the neighbours N [v] at the
(l − 1)-th iteration, while COMB(l) combines the features of the node itself with those of its neighbours.
For graph-level tasks such as classification or regression, a global readout function is applied to the node
embeddings to produce the final output:

o = READ({xL
v , v ∈ VG}). (2)

The READ function can be implemented as a sum, mean, or max overall node features or through more
sophisticated approaches (Bruna et al., 2013; Yuan and Ji, 2020; Khasahmadi et al., 2020).

Several architectures have been proposedVeličković et al. (2018); Hamilton et al. (2017); Xu et al. (2019);
Defferrard et al. (2016), all utilizing the same underlying mechanism but differing in their choice of COMB
and AGG functions.

Multi-relational GNNs, such as Relational Graph Convolutional Networks (Schlichtkrull et al., 2017), are
specifically designed to handle graphs with multiple types of relations between nodes. In this framework,
the message passing mechanism is extended to account for relation types, ensuring that information from
different relations is treated distinctively. For a multi-relational graph G = (V, E, R) where R is the set of
relation types, the feature update for a node v ∈ V in the l-th layer is defined as:

xl
v = σ

∑
r∈R

∑
u∈Nr(v)

1
cr,v

Wrxl−1
u + W0xl−1

v

 (3)

where Nr(v) represents the neighbors of node V connected by relation r, Wr is a learnable weight matrix
specific to relation r, cr,v is a normalization constant that can account for the degree of nodes, W0 is a
weight matrix for the self-loop connection, and σ is a non-linear activation function. In this formulation, the
feature propagation process aggregates messages from neighbors for each relation type separately, applying
distinct transformations before combining them. This mechanism allows the model to learn relation-specific
patterns, making it particularly suitable for tasks such as knowledge graph completion and multi-relational
node classification. Additionally, a global readout function READ can be applied to obtain graph-level
outputs as described in Equation 2. Recent advancements in RGCNs have improved multi-relational data
modeling Zhu et al. (2019); Yun et al. (2019); Hu et al. (2020b); Lv et al. (2021); Yu et al. (2021); Mitra et al.
(2022); Ferrini et al. (2024a;b), yet diverse benchmarks remain limited. This article introduces a dataset
and framework to convert Java source code into relational and multi-relational graphs, capturing structural
and semantic aspects. Focused on software performance prediction, it offers a novel benchmark for RGCNs
in underexplored domains.

4 Proposed Datasets

The proposed dataset focuses on predicting the execution time of Java source code, providing an early
estimate of code complexity. This is particularly valuable when using cloud computing services, where
execution time plays a critical role. The dataset consists of Java code files paired with their corresponding
execution times. Each file is parsed into an AST, which is then augmented with edges representing control
and data flows, offering a comprehensive view of both code structure and behaviour.

5

Under review as submission to TMLR

Table 1: Overview of the OSSBuilds and HadoopTests datasets.

Project Description Files Avg.
Nodes

OSSBuilds

systemDS Apache Machine Learning system for data science lifecycle 127 871

H2 Java SQL DB 194 2091

Dubbo Apache Remote Procedure Call framework 123 616

RDF4J Scalable RDF processing 478 450

Total 922 875

HadoopTests Hadoop Apache framework for processing large datasets on clusters 2895 1490

4.1 Data Collection

For our experiments, we employed two different real-world datasets of performance measurements across
diverse software environments. The first dataset (OSSBuild) consists of actual build data sourced from the
continuous integration systems of four open-source projects, representing real-world software development
workflows. The second dataset (HadoopTests) consists of a larger collection of performance measurements
obtained by systematically executing the unit tests of the Hadoop open-source project multiple times in a
controlled environment. A summary of both datasets can be found in Table 1. By using datasets from
two distinct sources—one capturing variability in real-world build environments (OSSBuild) and the other
collected in a controlled setting (HadoopTests)—we seek to provide an evaluation that considers both real-
world complexity and controlled settings. To further address the diversity, and representativeness of our
datasets, as well as the steps taken to mitigate potential biases in the data collection process, we provide a
detailed analysis in Appendix G. In the following subsections, we provide further details about each dataset
used in our experimental studies.

4.1.1 OSSBuild Dataset

This dataset, initially utilized in Samoaa et al. (2022b), contains data on test execution times from production
build systems for four open-source projects: systemDS 1, H2 2, Dubbo 3, and RDF4J 4. These projects
utilize public continuous integration servers, from which we extracted test execution times as a proxy for
performance during the summer of 2021. Table 1 (top) presents basic statistics about the projects in this
dataset. "Files" indicates the number of unit test files for which we collected execution times, and each file
will be represented as one graph, while "Avg.Nodes" relates to the average number of nodes in the resulting
graphs. Prior to parsing, code comments were removed to reduce the number of nodes in each graph, as
they are considered non-essential.

4.1.2 HadoopTests Dataset

To overcome the limitations of the OSSBuild dataset, particularly the limited number of files (graphs) per
project, we compiled a second dataset for this study. We chose the Apache Hadoop framework 5 due to its
extensive number of test files (2,895) and its sufficient complexity. Each unit test in the project was executed
five times, with the JUnit framework Samoaa and Leitner (2021) recording the execution duration for each
test file at millisecond granularity. The data collection was conducted on a dedicated virtual machine within
a private cloud environment equipped with two virtual CPUs and 8 GB of RAM. Following best practices
in performance engineering, we disabled all non-essential services during the test runs. Statistics for the
HadoopTests dataset are provided in Table 1 (bottom).

1https://github.com/apache/systemds
2https://github.com/h2database/h2database
3https://github.com/apache/dubbo
4https://github.com/eclipse/rdf4j
5https://github.com/apache/hadoop

6

Under review as submission to TMLR

4.2 AST Construction

To construct the AST, we parse the Java code using javalang6, a pure Python library designed for Java pars-
ing. This parser extracts structural elements of the code while omitting purely syntactical components such
as comments, brackets, and code location metadata. The javalang parser produces ASTs by assigning each
parsed element to one of 72 predefined node types. These node types represent different program compo-
nents, such as method declarations, variable assignments, and control flow structures (detailed in Appendix
C). Since javalang is widely used in software engineering research, its node type definitions follow a stan-
dardized approach, ensuring consistency with existing parsing methodologies. Once the AST is constructed,
it forms a tree-like structure (an acyclic undirected graph) composed of these 72 node types. To incorporate
this representation into our model, we encode each node type using one-hot encoding, enabling the use of
node embeddings for downstream learning tasks.

4.3 From AST to RelSC

The AST obtained from a Java source code file is initially an acyclic, undirected graph. To transform it
into a more expressive representation, we first convert it into a directed graph by assigning directed edges
from parent nodes to child nodes. To further enrich the graph and capture both structural and semantic
relationships, we introduce 11 additional edge types. These edges integrate information from the AST,
CFG, and DFG, enhancing the representation of execution semantics and dependencies within the code.
The introduced edges are categorized as follows:

AST-Derived Edges: These edges directly preserve the hierarchical structure of the AST.

• AST Edges (a): These edges are inherited directly from the AST, maintaining the parent-child
relationships within the syntax tree.

• Next Token (b): Connects leaf nodes sequentially, capturing the linear order of tokens in the source
code.

• Next Sibling (c): Links each node to its adjacent sibling in the AST, preserving structural locality.

Data Flow Edges: These edges capture dependencies based on variable usage and data propagation.

• Next Use (d): Connects a variable node to the next occurrence where it is used, effectively modeling
data dependencies between statements.

Control Flow Edges: These edges simulate execution paths and conditional branching within the pro-
gram.

• If Flow (e): Connects the predicate (condition) of an if-statement to the corresponding block of
code executed when the condition is true.

• Else Flow (f): Links the predicate of an if-statement to the alternative (optional) else-block, cap-
turing branching behavior.

• While Execution Flow (g): Connects the condition of a while loop to its body, modeling the
repeated execution of loop iterations.

• While Next Flow (h): Links the last statement inside a while-loop body back to the condition
node, simulating the loop execution process.

• For Execution Flow (j): Connects the loop condition in a for-statement to the body of the loop,
ensuring proper modeling of iterative execution.

6https://pypi.org/project/javalang/

7

Under review as submission to TMLR

• For Next Flow (k): Similar to the While Next Flow edge, this edge models the execution order
within for-loops.

• Next Statement Flow (i): Represents the sequential execution of statements within a code block
by connecting each statement to the next one in order.

By integrating these edges, the graph effectively captures both syntactic structure and execution behavior,
creating a richer representation for downstream tasks such as execution time prediction and performance
analysis.

In Figure 4 (left), we present the RelSC graph generated from the example in Listing 1. While our ap-
proach builds upon the RelSC representation introduced in Samoaa et al. (2022b), it incorporates several
key enhancements. Most notably, we integrate semantic node type information, which was not considered
in Samoaa et al. (2022b). These node types are extracted using the javalang parser, as detailed in Section
4.2, enriching the graph representation with additional syntactic context. Furthermore, unlike Samoaa et al.
(2022b), where node embeddings rely solely on structural properties, our approach enhances node feature
representation by leveraging both node type encoding and edge information. Given that the RelSC graph is
a multigraph—where multiple edges can exist between the same pair of nodes—we construct node features
by concatenating the one-hot encoding of node types with the summed one-hot encoding of their outgo-
ing edges. This allows for a more expressive representation of both node roles and their relational context
within the graph. These improvements make our approach more semantically aware and structurally en-
riched compared to Samoaa et al. (2022b), ultimately leading to a more informative graph representation
for downstream tasks.

4.4 From RelSC to Multi-RelSC

Once RelSC graphs have been computed, we also provide a multi-relational version of the dataset, referred
to as Multi-RelSC. This extension introduces an additional layer of semantic information by categorizing
nodes based on their roles and meanings within the Abstract Syntax Tree (AST) (see Section 4.2). The
decision to split node types into categories stems from the need to capture the diverse and domain-specific

Relational Source Code ()
Method

Declaration

int factorial

factorial

Parameter BlockStmt

IfStmt

IfBlock ElseBlock

ReturnStmt

Binary
Expr: times

n

n

Method
Call Expr

1

Binary
Expr: minus

Binary
Expr: less equals

New edges
From AST

Legend:

Multi-Relational Source Code ()

Data types

Declaration

Others Others

Others

Others

Others Others

Struct. elem.

Control flow

Struct. elem. Struct. elem.

Control flow

Operations

Operations

Operations

Operations

Data types

Data types

Declaration

Declaration

Declaration

Others

Others

Others

Others

Others

Legend:
From
From
From
From
From
From. . .

to
to
to
to
to
to

Struct. elem.

Struct. elem.

Figure 4: (Left) RelSC graph for the example presented in Listing 1. (Right) Multi-RelSC graph for the
example presented in Listing 1

8

Under review as submission to TMLR

relationships that exist in programming constructs. Specifically, we identify seven categories of nodes: Dec-
larations, which refer to the definition or declaration of variables, methods, classes, and similar constructs;
Data Types, representing specific data types or references to types; Control Flow, which includes terms
associated with constructs that control the program’s execution flow; Operations, referring to terms that
signify operations or expressions; Structural Elements, covering structural components of the code such as
blocks, compilation units, and packages; Exceptions and Errors, relating to exception and error handling
mechanisms; and finally, Others, for terms that do not fit into any of the previously defined categories. In
Appendix C, we provide the categorization of each node type, grouping them into these distinct categories.
Additionally, we define a relationship for every possible connection between these categories, resulting in a
maximum of 49 possible unique relations (more details in Appendix E). As a result, we construct a multi-
relational graph with up to 49 distinct relation types. Each node is represented by a feature vector that
combines the one-hot encoding of its node type with the summed one-hot encodings of its outgoing edge
types (see Section 4.3). Figure 4 (right) illustrates the Multi-RelSC graph corresponding to the example in
Listing 1.

5 Datasets Statistics

In this section, we provide a detailed analysis of the RelSC and Multi-RelSC datasets, highlighting their
key structural characteristics and diversity. By examining node and edge statistics, as well as node type
distributions, we demonstrate the complexity and variability of the datasets. These insights establish the
suitability of RelSC and Multi-RelSC as robust benchmarks for evaluating graph-based models in diverse
scenarios and application domains.

RelSC: Table 2 summarizes the key characteristics of the homogeneous graphs in our RelSC dataset, of-
fering insights into their diversity and complexity. The average node and edge counts vary notably across
datasets, with Hadoop having the highest averages, indicating greater complexity, while Dubbo represents
a more compact framework, highlighting the dataset’s versatility in covering both large-scale and smaller
graphs. Variability, as shown by STD values, is significant in H2 and Hadoop, pointing to diverse structural
complexities. For instance, Hadoop ranges from 23 to 32,592 nodes and 80 to 127,822 edges, illustrating
the presence of both simple and highly complex graphs. RDF4J and SystemDS also show broad ranges,
reflecting the dataset’s overall diversity. These statistics demonstrate the RelSC dataset’s suitability as a
strong benchmark for evaluating graph-based models, ensuring that GNNs can be tested across different
scenarios. The variety of graphs presents challenges and opportunities for developing more sophisticated
algorithms that generalize across multiple domains and software systems.

Multi-RelSC: Table 2 presents an overview of the Multi-RelSC dataset, which consists of multi-relational
graphs. Compared to RelSC, Multi-RelSC contains graphs with a higher average number of edges, such as
Hadoop’s 11,764.1 edges, indicating a greater degree of connectivity. H2 in OssBuilds has the highest mean
node and edge counts, representing the largest graphs in the dataset. The dataset exhibits considerable
variation in graph sizes, with Hadoop ranging from 23 nodes and 176 edges to 32,592 nodes and 259,820
edges, demonstrating a broad range of structural characteristics. Multi-RelSC offers a collection of graphs,
fostering the development of advanced algorithms to address complex software systems.

5.1 Distribution of Node Types

Figure 5 shows the node category distributions for Multi-RelSC OssBuilds (left) and Multi-RelSC Hadoop
(right) datasets. Most nodes fall into "Operation" and "Others", indicating a high occurrence of expres-
sions, operations, literals, and constants. The standard error (black arrows) is especially large for these
categories, particularly in Hadoop, showing high variability across samples. Categories like "Control Flow"
and "Data Types" have lower counts and variability, reflecting the diverse complexity of the graphs. More
node distributions are in Appendix D.

9

Under review as submission to TMLR

Hadoop OssBuilds

H2 Dubbo rdf SystemDS Tot

|V | |E| |V | |E| |V | |E| |V | |E| |V | |E| |V | |E|

mean 1490.3 5731.1 2091.3 8019.6 616.1 2354.2 449.9 1740 871.3 3321 875.5 3361
std 2283.4 8817.9 2631.1 10133.8 998.9 3818.5 726.2 2826.1 629.9 2410.9 1524.7 5869.7
min 23 80 130 500 7 20 22 76 22 78 7 20
max 32592 127822 15947 61758 6374 24540 5918 23146 3396 13208 15947 61758

mean 1490.3 11764.1 2091.3 16517.8 616.1 4811.6 449.9 3573.6 871.3 6804.5 875.5 6907.4
std 2283.4 18052.4 2631.1 20828.4 998.9 7800.6 726.2 5783.4 629.9 4946.3 1524.7 12060.3
min 23 176 130 1020 7 40 22 156 22 156 7 40
max 32592 259820 15947 127032 6374 50672 5918 47284 3396 27740 15947 127032

Table 2: Statistics for RelSC datasets (upper) and for Multi-RelSC (lower)

Str
uct

ure
Othe

rs

Decl
ara

tio
ns

Data
 ty

pe
s

Ope
rat

ion
s

Con
tro

l

Ex
cep

tio
ns

0

100

200

300

400

500

600

700

800

Co
un

t

Categories in OssBuilds

Str
uct

ure
Othe

rs

Decl
ara

tio
ns

Data
 ty

pe
s

Ope
rat

ion
s

Con
tro

l

Ex
cep

tio
ns

Co
un

t

Categories in Hadoop

Figure 5: Distribution of node categories in OssBuilds
(left) and Hadoop (right).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Target values in OssBuilds
Mean

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fr
eq

ue
nc

y

Target values in Hadoop
Mean

Figure 6: Distribution of target values in OssBuilds
(left) and Hadoop (right).

5.2 Target values

Figure 6 illustrates the distribution of target values for OssBuilds (left) and Hadoop (right). The figure
shows that both projects contain a higher proportion of fast-executing Java scripts compared to slower
ones. The original execution time values range from 0.5 seconds to 4751.51 seconds in OssBuilds and from
0.2 seconds to 1059.67 seconds in Hadoop. Since these values span different ranges across datasets, direct
comparisons would be challenging. To ensure comparability, we normalize the target values to the [0,1]
range independently for each dataset. Target value distributions for SystemDS, H2, Dubbo, and RDF4J are
provided in Appendix H.

6 Experiments

In this section, we present the performance of basic GNN and HeteroGNN models on the RelSC and
Multi-RelSC datasets. It is important to note that the main objective of our work is to introduce a novel
dataset, not to propose a new architecture.

6.1 Implementation Details and Evaluation

We evaluate our models using architectures specifically designed for ASTs, source code, and graphs, en-
suring a fair comparison across different architectural paradigms. The AST-based architecture includes
Code2Vec Alon et al. (2019), while source code architectures encompass CodeBERT Feng et al. (2020). For
graph-based architectures, we consider GCN Kipf and Welling (2017), ChebConv Defferrard et al. (2017),
GIN Xu et al. (2019), GraphSAGE Hamilton et al. (2017), and PNA Corso et al. (2020) for RelSC graphs.
For Multi-RelSC datasets, we employ GraphSAGE and GAT Veličković et al. (2018). Notably, for mod-

10

Under review as submission to TMLR

els trained on Multi-RelSC datasets, we leverage heterogeneous message passing7, which allows the use of
distinct parameter sets for different relation types.

All models have two convolutional layers (hidden dimension of 30) and two fully connected layers. We applied
mean and max global pooling for graph prediction, with batch normalization and dropout for regularization.
Models were implemented using PyTorch-Geometric. Each dataset was split into 70% training, 15% valida-
tion, and 15% test sets. It is worth mentioning that, since the primary focus of this work is to introduce
novel datasets, we did not perform a hyperparameter search. Each model was trained for 100 epochs with
early stopping (patience 15), repeated five times with different seeds, a learning rate of 0.01, and batch size
of 32. Experiments were conducted on a machine with four NVIDIA Tesla A100 GPUs (48GB), two Xeon
Gold 6338 CPUs, and 256GB DDR4 RAM.

The proposed datasets for the graph regression task exhibit a notable imbalance in target values (see section
5.2). For example, in the Hadoop dataset, approximately 50% of the target values fall within the range
of [0, 0.22], indicating a significant concentration of samples in this lower range. This imbalance in the
targets makes evaluation more challenging. Therefore, we report the Mean Absolute Error (MAE) as our
primary metric. However, since MAE does not account for relative errors, we include additional metrics
in Appendix B, specifically Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
Spearman’s rank correlation coefficient, and the Maximum Relative Error (MRE).

Other Approaches We use two well-known software engineering models that do not rely on graph struc-
tures: Code2Vec Alon et al. (2019) and CodeBERT Feng et al. (2020). Code2Vec is a neural network model
that represents source code as continuous vectors by extracting structural and semantic relationships from
ASTs. It encodes code snippets as sets of path-contexts, which are embedded and weighted using an atten-
tion mechanism to identify the most relevant features for predicting code properties like method names. The
resulting vectorized representation is then passed through a feedforward neural network to predict source
code execution time. In contrast, CodeBERT is a pre-trained transformer-based model designed to learn
meaningful representations of source code. We use it to extract vectorized representations of code, which
are then fed into a feedforward neural network for execution time prediction. Notably, CodeBERT has a
512-token limit, requiring input code truncation. To address this, we use GPT-3.5 Turbo Ye et al. (2023) to
shorten the input code while preserving essential information. Both Code2Vec and CodeBERT are trained
for 100 epochs with a batch size of 8.

6.2 Results

RelSC: Table 3 presents the performance of source code-based, AST-based, and GNN-based models on the
RelSC datasets, evaluated using MAE along with the standard deviation across five different initialization
seeds. Across all datasets, GNN-based models consistently outperform source code-based and AST-based
models. Notably, PNA achieves the lowest MAE in every dataset, demonstrating superior performance over
all other models.

Multi-RelSC: Table 3 indicates that HeteroGAT tends to achieve lower MAE values compared to Het-
eroSAGE across the evaluated datasets. This may be attributed to HeteroGAT’s capacity to model multi-
relational connections in the Multi-RelSC datasets, potentially providing a richer contextual representation
for predictions. Variation in MAE across datasets is observed. Hadoop, which has a larger node and edge
count, exhibits lower MAE values compared to smaller datasets like SystemDS and H2, where MAE values
are generally higher, particularly for HeteroSAGE. Additionally, datasets with higher variability, such as
SystemDS and H2, show greater fluctuations in MAE, which could indicate challenges in adapting to diverse
graph structures. Overall, HeteroGAT appears to perform more favorably in most cases, though differences
in graph size seem to influence MAE outcomes. The multi-relational nature of the Multi-RelSC datasets
may enable HeteroGAT to take advantage of these relational structures in certain scenarios.

7https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.HeteroConv.html

11

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.HeteroConv.html

Under review as submission to TMLR

Table 3: Test MAE (lower the better) for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dobbo OssBuilds

Source code CodeBERT 0.14(±0.11) 0.12(±0.10) 0.17(±0.13) 0.21(±0.12) 0.18(±0.12) 0.15(±0.08)

AST Code2Vec 0.14(±0.01) 0.17(±0.01) 0.19(±0.02) 0.17(±0.02) 0.21(±0.02) 0.15(±0.01)

RelSC

GCN 0.12(±0.00) 0.13(±0.00) 0.07(±0.02) 0.18(±0.01) 0.14(±0.02) 0.14(±0.01)
Cheb 0.11(±0.00) 0.12(±0.01) 0.08(±0.04) 0.18(±0.01) 0.13(±0.00) 0.15(±0.01)
GIN 0.12(±0.01) 0.12(±0.00) 0.08(±0.05) 0.20(±0.01) 0.14(±0.01) 0.14(±0.01)
GraphSAGE 0.13(±0.00) 0.13(±0.01) 0.07(±0.03) 0.19(±0.01) 0.12(±0.01) 0.14(±0.01)
PNA 0.09(±0.01) 0.09(±0.01) 0.06(±0.00) 0.17(±0.01) 0.10(±0.01) 0.11(±0.00)

Multi-RelSC HeteroSage 0.27(±0.11) 0.20(±0.05) 6.22(±5.45) 4.35(±3.51) 4.05(±5.60) 0.58(±0.31)
HeteroGAT 0.14(±0.02) 0.15(±0.01) 0.31(±0.11) 1.09(±0.54) 0.19(±0.09) 0.18(±0.02)

6.3 Discussion

0.0 0.2 0.4 0.6 0.8 1.0
Predictions

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 v

al
ue

OssBuilds
Fitted linear
regressor

0.0 0.2 0.4 0.6 0.8 1.0
Predictions

Ta
rg

et
 v

al
ue

Hadoop
Fitted linear
regressor

Figure 7: Test predictions versus target values for the
PNA model in OssBuilds (left) and Hadoop (right).

The results highlight the challenges posed by the
proposed datasets and the varying performance of
different models. PNA achieves the best results on
RelSC datasets, while HeteroGAT outperforms Het-
eroSAGE on Multi-RelSC datasets. However, Het-
eroGAT struggles on smaller datasets, such as Sys-
temDS and H2, indicating potential limitations in
handling less complex graphs. Surprisingly, mod-
els trained on RelSC datasets outperform those on
Multi-RelSC datasets, despite the richer informa-
tion provided by multi-relational structures. This
suggests an open challenge in designing models that
can fully leverage multi-relational data, which war-
rants further investigation. Moreover, source code
and AST-based models underperform compared to
GNN models, primarily due to their susceptibility to outliers, as evidenced by the maximum relative error
reported in Table 12 (Appendix B). This limitation affects their reliability in execution time prediction tasks,
reinforcing the advantages of graph-based representations. These findings establish the proposed datasets
as rigorous benchmarks for evaluating GNN models, offering a valuable testbed for developing architectures
better suited to real-world graph-based learning tasks. To further illustrate the need for improved models,
Figure 7 presents the correlation between predicted and target values for the PNA model on OssBuild (left)
and Hadoop (right). The figure reveals significant outliers, particularly in Hadoop, where predictions cluster
near zero and fail to estimate values exceeding 0.6. Such inaccuracies can lead to unreliable execution time
predictions in real-world applications, emphasizing the necessity for more robust and generalizable models.

6.4 Ablation Study

Table 4: Test MAE on OssBuilds
using only ASTs

Model Test MAE
GraphConv 0.22(±0.02)
ChebConv 0.23(±0.01)
GINConv 0.21(±0.01)
GraphSAGE 0.22(±0.01)

Abstract Syntax Trees represent source code syntax but lack semantic
details like control and data flow. To address this, we augment ASTs with
edges from Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs),
creating Flow-Augmented ASTs (FA-ASTs). An ablation study on the
OssBuilds dataset (Table 4) shows that adding these edges significantly
improves performance compared to plain ASTs (Table 3).

The inclusion of flow edges significantly enhances the performance of all
models, reducing the test MAE by approximately 0.07 to 0.09. For in-
stance, the MAE for GraphConv improved from 0.22(±0.02) to 0.14(±0.01),
ChebConv from 0.23(±0.01) to 0.15(±0.01), GINConv from 0.21(±0.01) to
0.14(±0.01), and GraphSAGE from 0.22(±0.01) to 0.14(±0.01). These results

12

Under review as submission to TMLR

underscore the critical role of semantic augmentation, as the incorporation of control and data flow infor-
mation enables GNN models to learn richer representations that better capture execution pathways and
dependencies within the code, ultimately leading to significant improvements in prediction accuracy. This
demonstrates the importance of flow augmentation for constructing informative graph representations in
software performance prediction tasks.

7 Real-World Applications

Accurately predicting source code execution time is essential for optimizing software performance, improving
development workflows, and enhancing user experience. The proposed datasets, RelSC and Multi-RelSC,
can be leveraged in several impactful ways:

• Code Optimization and Refactoring: Modern software development relies heavily on execution time
analysis to optimize performance. For instance, Facebook’s TAO system dynamically adjusts caching
strategies based on execution predictions, improving query response times Bronson et al. (2013).
Similarly, Google’s Chrome team leverages performance models to prioritize rendering optimizations,
enhancing user experience Harrelson (2017).

• Continuous Integration and Deployment (CI/CD): Detecting performance regressions early in the
development cycle is crucial for maintaining efficient software systems. Large-scale CI/CD platforms,
such as those used by Microsoft and Netflix, incorporate performance regression testing to identify
slowdowns before deployment. Reliable execution time estimation enables automated detection of
inefficient code changes, preventing costly degradations Lindon et al. (2022); Biringa and Kul (2024).

• Performance-Aware Scheduling: Effective scheduling in cloud computing relies on accurate esti-
mations of execution time to allocate resources efficiently and minimize delays. Cloud computing
platforms such as AWS Lambda and Google Cloud Functions must schedule and allocate resources
dynamically Jia et al. (2018); Saravanan et al. (2021); Belgacem (2022).

These applications demonstrate the value of our datasets in driving performance-focused decision-making in
software engineering, with potential for future integration into automated performance tuning, debugging,
and energy-efficient coding tools.

8 Data Release

To facilitate further research, we publicly release the raw data and PyTorch Geometric graph objects on
Zenodo, along with the code repository on GitHub8. The repository contains model implementations, graph
construction instructions, a tutorial for loading the dataset and training models, and dataset statistics. The
PyTorch Geometric graph objects include predefined train (70%), validation (15%), and test (15%) splits
to ensure consistency across experiments. Since OssBuilds consists of multiple projects (SystemDS, H2,
Dubbo, and RDF4J), each individual project follows the same 70%-15%-15% partitioning. Importantly,
the train, validation, and test sets of each project are fully contained within the corresponding splits of
the complete OssBuilds dataset, ensuring a consistent evaluation framework at both the project-specific
and dataset-wide levels. This structured partitioning allows for fine-grained analysis while maintaining
comparability across different evaluation scales. Comprehensive instructions for accessing and using these
data objects are available in the official GitHub repository, which also includes well-documented code to
support reproducibility and facilitate ease of use for researchers and practitioners.

9 Conclusion

In this work, we have addressed the critical gap in publicly available benchmarks for graph regression tasks
by introducing two novel datasets specifically tailored to software performance prediction. Our proposed

8https://anonymous.4open.science/r/graph_regression_datasets-407E/

13

https://anonymous.4open.science/r/graph_regression_datasets-407E/
https://anonymous.4open.science/r/graph_regression_datasets-407E/

Under review as submission to TMLR

datasets, RelSC and Multi-RelSC, represent Java source code and their corresponding execution times,
providing valuable resources for the exploration of GNN models in a new domain—software engineering.
These contributions extend the scope of GNN applications beyond the traditionally explored domains of
Chemistry and Drug Discovery, enabling researchers to investigate graph regression in software performance
and related fields. With our datasets being publicly accessible, we aim to foster further research, providing
a standardized benchmark that can drive the development, evaluation, and comparison of GNN models in
software engineering and other underexplored areas.

References
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph

neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3):498–511, 2009.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR,
2019.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using graph neural
networks for multi-node representation learning. Advances in Neural Information Processing Systems, 34:
9061–9073, 2021a.

Veronica Lachi, Francesco Ferrini, Antonio Longa, Bruno Lepri, and Andrea Passerini. A simple and ex-
pressive graph neural network based method for structural link representation. In ICML 2024 Work-
shop on Geometry-grounded Representation Learning and Generative Modeling, 2024. URL https:
//openreview.net/forum?id=EGGSCLyVrz.

Olga Zaghen, Antonio Longa, Steve Azzolin, Lev Telyatnikov, Andrea Passerini, and Pietro Lio. Sheaf
diffusion goes nonlinear: Enhancing GNNs with adaptive sheaf laplacians. In ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024. URL https://openreview.
net/forum?id=MGQtGV5gPO.

Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 1185–1196, 2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133, 2020a.

14

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=EGGSCLyVrz
https://openreview.net/forum?id=EGGSCLyVrz
https://openreview.net/forum?id=MGQtGV5gPO
https://openreview.net/forum?id=MGQtGV5gPO

Under review as submission to TMLR

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663,
2020.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and
Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing Systems,
35:22326–22340, 2022.

Zhou Zhiyao, Sheng Zhou, Bochao Mao, Xuanyi Zhou, Jiawei Chen, Qiaoyu Tan, Daochen Zha, Yan Feng,
Chun Chen, and Can Wang. Opengsl: A comprehensive benchmark for graph structure learning. Advances
in Neural Information Processing Systems, 36, 2024.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure
Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph benchmark
for machine learning on temporal graphs. Advances in Neural Information Processing Systems, 36, 2024.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current appli-
cations in bioinformatics. Frontiers in genetics, 12:690049, 2021b.

Pietro Bongini, Niccolò Pancino, Franco Scarselli, and Monica Bianchini. Biognn: how graph neural networks
can solve biological problems. In Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image
and Data Analytics, pages 211–231. Springer, 2022.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert Systems with
Applications, 207:117921, 2022.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recommendation in
social networks. Neurocomputing, 549:126441, 2023.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web conference, pages 417–426, 2019.

Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen, Dongsheng
Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better molecular representation for
drug discovery? a comparison study of descriptor-based and graph-based models. Journal of Cheminfor-
matics, 13(1):12, Feb 2021. ISSN 1758-2946. doi: 10.1186/s13321-020-00479-8.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Seidel, and
Thierry Langer. A compact review of molecular property prediction with graph neural networks. Drug
Discovery Today: Technologies, 37:1–12, 2020.

Zehong Zhang, Lifan Chen, Feisheng Zhong, Dingyan Wang, Jiaxin Jiang, Sulin Zhang, Hualiang Jiang,
Mingyue Zheng, and Xutong Li. Graph neural network approaches for drug-target interactions. Current
Opinion in Structural Biology, 73:102327, 2022.

Chris Harrelson. Performance improvements in chrome’s rendering pipeline. chromium blog, 2017.

Michael Lindon, Chris Sanden, and Vaché Shirikian. Rapid regression detection in software deployments
through sequential testing. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3336–3346, 2022.

Chidera Biringa and Gökhan Kul. Pace: A program analysis framework for continuous performance predic-
tion. ACM Transactions on Software Engineering and Methodology, 33(4):1–23, 2024.

John McCarthy. Recursive functions of symbolic expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195, 1960.

Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding source code evolution using abstract
syntax tree matching. In Proceedings of the 2005 international workshop on Mining software repositories,
pages 1–5, 2005.

15

Under review as submission to TMLR

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural source
code representation based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 783–794. IEEE, 2019a.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. Cast:
Enhancing code summarization with hierarchical splitting and reconstruction of abstract syntax trees. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4053–
4062, 2021.

Peter Samoaa, Firas Bayram, Pasquale Salza, and Philipp Leitner. A systematic mapping study of source
code representation for deep learning in software engineering. IET Software, 16(4):351–385, 2022a. doi:
https://doi.org/10.1049/sfw2.12064. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/sfw2.12064.

Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970.

Simone Campanoni and Stefano Crespi Reghizzi. Traces of control-flow graphs. In Developments in Language
Theory: 13th International Conference, DLT 2009, Stuttgart, Germany, June 30-July 3, 2009. Proceedings
13, pages 156–169. Springer, 2009.

James Koppel, Jackson Kearl, and Armando Solar-Lezama. Automatically deriving control-flow graph gener-
ators from operational semantics. Proceedings of the ACM on Programming Languages, 6(ICFP):742–771,
2022.

Shaswata Mitra, Stephen A Torri, and Sudip Mittal. Survey of malware analysis through control flow graph
using machine learning. In 2023 IEEE 22nd International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pages 1554–1561. IEEE, 2023.

Jack B Dennis and David P Misunas. A preliminary architecture for a basic data-flow processor. In Pro-
ceedings of the 2nd annual symposium on Computer architecture, pages 126–132, 1974.

Alan L. Davis and Robert M. Keller. Data flow program graphs. Computer, 15(02):26–41, 1982.

Kavi, Buckles, and Bhat. A formal definition of data flow graph models. IEEE Transactions on computers,
100(11):940–948, 1986.

Zhiqiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. Graphiler: Optimizing graph neural
networks with message passing data flow graph. Proceedings of Machine Learning and Systems, 4:515–
528, 2022.

Peter Samoaa, Antonio Longa, Mazen Mohamad, Morteza Haghir Chehreghani, and Philipp Leitner. Tep-
gnn: Accurate execution time prediction of functional tests using graph neural networks. In Davide Taibi,
Marco Kuhrmann, Tommi Mikkonen, Jil Klünder, and Pekka Abrahamsson, editors, Product-Focused
Software Process Improvement, pages 464–479, Cham, 2022b. Springer International Publishing. ISBN
978-3-031-21388-5.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513–530, 2018.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Yuquan Li, Chang-Yu Hsieh, Ruiqiang Lu, Xiaoqing Gong, Xiaorui Wang, Pengyong Li, Shuo Liu, Yanan
Tian, Dejun Jiang, Jiaxian Yan, et al. An adaptive graph learning method for automated molecular
interactions and properties predictions. nature machine intelligence, 4(7):645–651, 2022.

16

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12064
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12064

Under review as submission to TMLR

David L Mobley and J Peter Guthrie. Freesolv: a database of experimental and calculated hydration free
energies, with input files. Journal of computer-aided molecular design, 28:711–720, 2014.

Zhihai Liu, Yan Li, Li Han, Jie Li, Jie Liu, Zhixiong Zhao, Wei Nie, Yuchen Liu, and Renxiao Wang. Pdb-
wide collection of binding data: current status of the pdbbind database. Bioinformatics, 31(3):405–412,
2015.

Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with environment-
based augmentations. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1069–1078, 2022.

Lucija Šikić, Adrian Satja Kurdija, Klemo Vladimir, and Marin Šilić. Graph neural network for source code
defect prediction. IEEE access, 10:10402–10415, 2022.

Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Phung. Regvd:
Revisiting graph neural networks for vulnerability detection. In Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Companion Proceedings, pages 178–182, 2022.

Miltiadis Allamanis. Graph neural networks in program analysis. Graph neural networks: foundations,
frontiers, and applications, pages 483–497, 2022.

Jiahao Liu, Jun Zeng, Xiang Wang, and Zhenkai Liang. Learning graph-based code representations for
source-level functional similarity detection. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 345–357. IEEE, 2023.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with
graphs. In International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=BJOFETxR-.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code representations with data flow,
2021. URL https://arxiv.org/abs/2009.08366.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion Stoica. Contrastive code
representation learning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.482. URL
http://dx.doi.org/10.18653/v1/2021.emnlp-main.482.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf.

David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. Linevd: statement-level vulnerability detection
using graph neural networks. In Proceedings of the 19th International Conference on Mining Software
Repositories, MSR ’22, page 596–607, New York, NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450393034. doi: 10.1145/3524842.3527949. URL https://doi.org/10.1145/3524842.
3527949.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural source
code representation based on abstract syntax tree. In Proceedings of the 41st International Conference on
Software Engineering, ICSE ’19, page 783–794. IEEE Press, 2019b. doi: 10.1109/ICSE.2019.00086. URL
https://doi.org/10.1109/ICSE.2019.00086.

Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A deep learning-based
clone detection approach. In 2017 IEEE international conference on software maintenance and evolution
(ICSME), pages 249–260. IEEE, 2017.

17

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://arxiv.org/abs/2009.08366
http://dx.doi.org/10.18653/v1/2021.emnlp-main.482
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://doi.org/10.1145/3524842.3527949
https://doi.org/10.1145/3524842.3527949
https://doi.org/10.1109/ICSE.2019.00086

Under review as submission to TMLR

Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood,
and Marc McConley. Automated vulnerability detection in source code using deep representation learning.
In 2018 17th IEEE international conference on machine learning and applications (ICMLA), pages 757–
762. IEEE, 2018.

Md Nakhla Rafi, Dong Jae Kim, An Ran Chen, Tse-Hsun (Peter) Chen, and Shaowei Wang. Towards better
graph neural network-based fault localization through enhanced code representation. Proc. ACM Softw.
Eng., 1(FSE), July 2024. doi: 10.1145/3660793. URL https://doi.org/10.1145/3660793.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural
languages, 2020. URL https://arxiv.org/abs/2002.08155.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374.

Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. Dobf: a deobfuscation
pre-training objective for programming languages. In Proceedings of the 35th International Conference
on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc.
ISBN 9781713845393.

Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf: A deobfuscation
pre-training objective for programming languages, 2021. URL https://arxiv.org/abs/2102.07492.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. Codegen: An open large language model for code with multi-turn program synthesis, 2023. URL
https://arxiv.org/abs/2203.13474.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 8696–8708, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL
https://aclanthology.org/2021.emnlp-main.685/.

Christoph Laaber, Mikael Basmaci, and Pasquale Salza. Predicting unstable software benchmarks using
static source code features. Empirical Softw. Engg., 26(6), November 2021. ISSN 1382-3256. doi: 10.1007/
s10664-021-09996-y. URL https://doi.org/10.1007/s10664-021-09996-y.

Huong Ha and Hongyu Zhang. Deepperf: performance prediction for configurable software with deep sparse
neural network. In Proceedings of the 41st International Conference on Software Engineering, ICSE ’19,
page 1095–1106. IEEE Press, 2019. doi: 10.1109/ICSE.2019.00113. URL https://doi.org/10.1109/
ICSE.2019.00113.

Peter Samoaa, Linus Aronsson, Philipp Leitner, and Morteza Haghir Chehreghani. Batch mode deep active
learning for regression on graph data. In 2023 IEEE International Conference on Big Data (BigData),
pages 5904–5913, 2023. doi: 10.1109/BigData59044.2023.10386685.

18

https://doi.org/10.1145/3660793
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2203.13474
https://aclanthology.org/2021.emnlp-main.685/
https://doi.org/10.1007/s10664-021-09996-y
https://doi.org/10.1109/ICSE.2019.00113
https://doi.org/10.1109/ICSE.2019.00113

Under review as submission to TMLR

Patrick Thomson. Static analysis: An introduction: The fundamental challenge of software engineering is
one of complexity. Queue, 19(4):29–41, September 2021. ISSN 1542-7730. doi: 10.1145/3487019.3487021.
URL https://doi.org/10.1145/3487019.3487021.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong.
Vuldeepecker: A deep learning-based system for vulnerability detection. In Proceedings 2018 Network
and Distributed System Security Symposium, NDSS 2018. Internet Society, 2018. doi: 10.14722/ndss.2018.
23158. URL http://dx.doi.org/10.14722/ndss.2018.23158.

Zhonghao Jiang, Weifeng Sun, Xiaoyan Gu, Jiaxin Wu, Tao Wen, Haibo Hu, and Meng Yan. Dfept: Data
flow embedding for enhancing pre-trained model based vulnerability detection. In Proceedings of the
15th Asia-Pacific Symposium on Internetware, Internetware ’24, page 95–104, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400707056. doi: 10.1145/3671016.3671388. URL https:
//doi.org/10.1145/3671016.3671388.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational
models of source code. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=B1lnbRNtwr.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields. In Pro-
ceedings of the 8th International Conference on Learning Representations, 2020.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-based graph
networks. In International Conference on Learning Representations, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks, 2017.

Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. Relation structure-aware hetero-
geneous graph neural network. In 2019 IEEE International Conference on Data Mining (ICDM), pages
1534–1539, 2019. doi: 10.1109/ICDM.2019.00203.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
9d63484abb477c97640154d40595a3bb-Paper.pdf.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings
of The Web Conference 2020, WWW ’20, page 2704–2710, New York, NY, USA, 2020b. Association for
Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380027. URL https://doi.org/
10.1145/3366423.3380027.

19

https://doi.org/10.1145/3487019.3487021
http://dx.doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1145/3671016.3671388
https://doi.org/10.1145/3671016.3671388
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1145/3366423.3380027

Under review as submission to TMLR

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting, benchmarking and
refining heterogeneous graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21, page 1150–1160, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467350. URL https://doi.org/
10.1145/3447548.3467350.

Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Weifeng Lv, and Hui Xiong. Heterogeneous graph representation
learning with relation awareness. CoRR, abs/2105.11122, 2021. URL https://arxiv.org/abs/2105.
11122.

Anasua Mitra, Priyesh Vijayan, Sanasam Ranbir Singh, Diganta Goswami, Srinivas Parthasarathy, and
Balaraman Ravindran. Revisiting link prediction on heterogeneous graphs with a multi-view perspective.
2022 IEEE International Conference on Data Mining (ICDM), pages 358–367, 2022. URL https://api.
semanticscholar.org/CorpusID:256463320.

Francesco Ferrini, Antonio Longa, Andrea Passerini, and Manfred Jaeger. Meta-path learning for multi-
relational graph neural networks. In Learning on Graphs Conference, pages 2–1. PMLR, 2024a.

Francesco Ferrini, Antonio Longa, Andrea Passerini, and Manfred Jaeger. A self-explainable heterogeneous
gnn for relational deep learning. arXiv preprint arXiv:2412.00521, 2024b.

Peter Samoaa and Philipp Leitner. An exploratory study of the impact of parameterization on jmh
measurement results in open-source projects. In Proceedings of the ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’21, page 213–224, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450381949. doi: 10.1145/3427921.3450243. URL https:
//doi.org/10.1145/3427921.3450243.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning distributed representations
of code. Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290353. URL https:
//doi.org/10.1145/3290353.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering, 2017. URL https://arxiv.org/abs/1606.09375.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, 33:13260–13271, 2020.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao Gong,
Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series models. arXiv preprint
arXiv:2303.10420, 2023.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. {TAO}:{Facebook’s} distributed data store for the
social graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 49–60, 2013.

Ya-Hui Jia, Wei-Neng Chen, Huaqiang Yuan, Tianlong Gu, Huaxiang Zhang, Ying Gao, and Jun Zhang. An
intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1):634–649, 2018.

C Saravanan, TR Mahesh, V Vivek, HK Shashikala, Tanveer Baig, et al. Prediction of task execution time
in cloud computing. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud)(I-SMAC), pages 752–756. IEEE, 2021.

Ali Belgacem. Dynamic resource allocation in cloud computing: analysis and taxonomies. Computing, 104
(3):681–710, 2022.

20

https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://arxiv.org/abs/2105.11122
https://arxiv.org/abs/2105.11122
https://api.semanticscholar.org/CorpusID:256463320
https://api.semanticscholar.org/CorpusID:256463320
https://doi.org/10.1145/3427921.3450243
https://doi.org/10.1145/3427921.3450243
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/1606.09375

Under review as submission to TMLR

A Licensing and Ethical Statement

Licensing: To construct our dataset, we rely on source code available on GitHub, distributed under the
following licenses:

• Hadoop: Apache License, Version 2.0

• H2: MPL 2.0 (Mozilla Public License, Version 2.0) or EPL 1.0 (Eclipse Public License)

• Dubbo: Apache License, Version 2.0

• rdf: BSD-3-Clause License

• SystemDS: Apache License, Version 2.0

We executed the source code and recorded the execution times, as described in Sections 4.1.1 and 4.1.2. The
resulting graphs, along with their execution times, are being released under the CC-BY license.

Ethical Statement: This dataset is designed to address challenges in graph representation learning, with a
particular emphasis on graph regression tasks. While it is not intended for this purpose, there is a possibility
that it could be used to enhance models for harmful applications. However, to the best of our knowledge,
our work does not directly pose any threat to individuals or society.

B Additional Metrics and validation results

In this section we evaluate standard GNN techniques on the proposed datasets. In particular, tables 6, 7
report the test and validation Root Mean Squared Error (RMSE), tables 8, 9 report the test and validation
Mean Absolute Percentage Error (MAPE), tables 10, 11 show the Spearman’s Rank Correlation Coefficient
(ρ) for test and validation data, and finally tables 12, 13 show the Maximum Relative Error (MRE).

The MAPE is defined as
MAPE = 1

n

n∑
i=1

yi − ȳi

yi
(4)

where n is the number of observations, yi is the actual value, and ȳi is the predicted value.

While the Spearman’s Rank Correlation Coefficient is a non-parametric measure of rank correlation and it
is defined as:

ρ = 1 − 6
∑

d2
i

n(n2 − 1) (5)

where n is the number of observations, di is the difference between the ranks of each pair of observations.
Note that ρ ranges from -1 to 1, where ρ = 1 indicates perfect positive correlation, ρ = −1 indicates perfect
negative correlation, and ρ = 0 indicates no correlation.

Tables 5–13 present the performance metrics across test and validation splits. Specifically, Table 5 reports
the MAE on validation splits. Tables 6 and 7 show the RMSE for test and validation splits, respectively.
Similarly, Tables 8 and 9 provide the MAPE, while Tables 10 and 11 present Spearman’s Rank Correlation
Coefficient. Finally, Tables 12 and 13 report the MRE for test and validation splits.

C Node Types

In table 14, we report the definition of each node type with their associated category.

21

Under review as submission to TMLR

Table 5: Validation MAE (lower the better) for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dobbo OssBuilds

Source code CodeBERT 0.12(±0.13) 0.12(±0.10) 0.18(±0.13) 0.16(±0.14) 0.13(±0.13) 0.12(±0.08)

AST Code2Vec 0.13(±0.00) 0.16(±0.01) 0.16(±0.01) 0.12(±0.00) 0.22(±0.01) 0.14(±0.01)

RelSC

GCN 0.11(±0.00) 0.13(±0.01) 0.06(±0.02) 0.13(±0.00) 0.09(±0.01) 0.14(±0.00)
Cheb 0.12(±0.00) 0.13(±0.01) 0.09(±0.03) 0.15(±0.00) 0.09(±0.01) 0.14(±0.00)
GIN 0.11(±0.00) 0.12(±0.00) 0.07(±0.04) 0.14(±0.01) 0.08(±0.01) 0.14(±0.00)
GraphSAGE 0.11(±0.00) 0.13(±0.01) 0.07(±0.03) 0.15(±0.00) 0.08(±0.00) 0.14(±0.00)
PNA 0.09(±0.01) 0.09(±0.01) 0.06(±0.00) 0.12(±0.01) 0.07(±0.01) 0.10(±0.00)

Multi-RelSC HeteroSage 0.17(±0.04) 0.16(±0.01) 1.13(±0.41) 1.29(±0.58) 0.38(±0.34) 0.47(±0.24)
HeteroGAT 0.12(±0.00) 0.15(±0.00) 0.14(±0.01) 0.24(±0.07) 0.08(±0.03) 0.19(±0.05)

Table 6: Test RMSE for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.17(±0.10) 0.15(±0.03) 0.21(±0.12) 0.20(±0.09) 0.19(±0.06) 0.18(±0.11)

AST Code2Vec 0.17(±0.01) 0.21(±0.01) 0.22(±0.02) 0.22(±0.03) 0.26(±0.01) 0.18(±0.01)

RelSC

GCN 0.16(±0.00) 0.15(±0.01) 0.08(±0.02) 0.21(±0.00) 0.17(±0.01) 0.18(±0.01)
Cheb 0.15(±0.00) 0.15(±0.01) 0.09(±0.05) 0.21(±0.01) 0.17(±0.01) 0.19(±0.01)
GIN 0.16(±0.01) 0.15(±0.00) 0.09(±0.05) 0.23(±0.01) 0.17(±0.01) 0.18(±0.01)
GraphSAGE 0.17(±0.01) 0.16(±0.01) 0.09(±0.02) 0.22(±0.01) 0.17(±0.01) 0.18(±0.01)
PNA 0.11(±0.02) 0.10(±0.01) 0.06(±0.02) 0.16(±0.00) 0.13(±0.01) 0.14(±0.02)

Multi-RelSC HeteroSage 0.68(±0.54) 0.27(±0.11) 8.71(±8.88) 6.08(±4.53) 7.82(±12.22) 1.89(±1.99)
HeteroGAT 0.21(±0.04) 0.18(±0.02) 0.43(±0.17) 0.97(±0.73) 0.32(±0.22) 0.24(±0.04)

D Node Category of the Datasets

In this section, we report the average number of nodes in each category for the remaining datasets: H2,
Dubbo, RDF4J, and SystemDS, as shown in Figures 8 to 11. We previously discussed the node distributions
for Hadoop and OssBuilds in Section 5.1.

Across these datasets, there is a noticeable consistency in the dominance of the "Others" and "Operation"
categories, which account for a significant portion of the nodes in each dataset. This trend is indicative of
the complex and diverse operations and structural elements within these software systems.

While "Others" and "Operation" categories consistently lead, the distribution among other categories, such as
"DataTypes" and "StructuralElements", varies between datasets. For instance, SystemDS and RDF4J show
a relatively balanced distribution across these additional categories, whereas H2 and Dubbo exhibit higher
variability, as reflected by their broader STD bars. This variability suggests that the graphs within each
dataset have distinct structural characteristics, further emphasizing the challenges in graph-based model
learning.

Overall, these figures highlight the variability and complexity inherent in each dataset, reinforcing the need
for flexible and robust models capable of handling diverse graph structures.

22

Under review as submission to TMLR

Table 7: Validation RMSE for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.16(±0.08) 0.15(±0.05) 0.22(±0.10) 0.21(±0.11) 0.13(±0.07) 0.11(±0.00)

AST Code2Vec 0.17(±0.00) 0.20(±0.06) 0.20(±0.01) 0.17(±0.00) 0.26(±0.01) 0.17(±0.01)

RelSC

GCN 0.17(±0.00) 0.17(±0.00) 0.10(±0.02) 0.17(±0.01) 0.11(±0.01) 0.17(±0.00)
Cheb 0.17(±0.00) 0.17(±0.00) 0.11(±0.03) 0.19(±0.01) 0.13(±0.01) 0.17(±0.01)
GIN 0.16(±0.00) 0.17(±0.00) 0.11(±0.03) 0.18(±0.01) 0.11(±0.02) 0.17(±0.01)
GraphSAGE 0.17(±0.00) 0.18(±0.00) 0.10(±0.02) 0.19(±0.01) 0.13(±0.00) 0.17(±0.00)
PNA 0.12(±0.01) 0.13(±0.02) 0.08(±0.00) 0.16(±0.00) 0.10(±0.01) 0.15(±0.02)

Multi-RelSC HeteroSage 0.35(±0.21) 0.19(±0.01) 0.93(±0.51) 1.43(±0.99) 0.55(±0.49) 0.98(±0.68)
HeteroGAT 0.18(±0.00) 0.19(±0.00) 0.18(±0.02) 0.32(±0.12) 0.10(±0.03) 0.27(±0.12)

Table 8: Test MAPE for RelSC and Multi-RelSC datasets. We report “-” to indicate that the value diverged.

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.59(±0.48) 0.58(±0.41) 0.59(±0.44) 0.88(±0.63) 1.15(±0.83) 5.12(±2.30)

AST Code2Vec 0.68(±0.12) 0.84(±0.10) 0.33(±0.06) 0.58(±0.28) 0.74(±0.36) 0.68(±0.13)

RelSC

GCN 0.54(±0.02) 0.78(±0.08) 0.09(±0.02) 0.55(±0.07) 0.73(±0.21) 0.68(±0.05)
Cheb 0.58(±0.08) 0.68(±0.04) 0.10(±0.05) 0.60(±0.07) 0.64(±0.11) 0.84(±0.06)
GIN 0.51(±0.01) 0.64(±0.04) 0.11(±0.06) 0.60(±0.07) 0.70(±0.10) 0.80(±0.08)
GraphSAGE 0.59(±0.02) 0.81(±0.08) 0.10(±0.03) 0.65(±0.03) 0.55(±0.03) 0.67(±0.05)
PNA 0.44(±0.05) 0.51(±0.10) 0.06(±0.02) 0.41(±0.08) 0.42(±0.05) 0.56(±0.02)

Multi-RelSC HeteroSage 1.11(±0.25) 1.18(±0.24) 7.71(±7.24) 10.59(±8.28) 12.59(±18.93) 2.03(±0.90)
HeteroGAT 0.67(±0.09) 0.94(±0.03) 0.41(±0.14) 1.73(±1.12) 0.73(±0.23) 0.93(±0.06)

E Relations on the Datasets

In this section, we discuss the average number of relations between different node categories for each
Multi-RelSC dataset. Figures 12-17 show a heatmap where the rows and columns correspond to various cat-
egories of nodes (defined in Section 4.4), such as "Declarations," "Control Flow," "Data Types", "Operations",
and "Others".

A common pattern across all datasets is the significant number of relations involving the "Operation" and
"Others" categories. These categories consistently show higher interaction counts, indicating their central
role in the overall structure of the software systems. Notably, the "Others" category frequently interacts
with "Operation" nodes, underscoring the complexity and interdependence of various node types within the
graphs.

The "Declarations" and "Data Types" categories also show considerable relations, particularly in datasets like
H2 and SystemDS (Figures 13 and 17), where they interact heavily with "Operation" nodes. This suggests
that these systems have a more intricate structure with a higher degree of dependencies between different
code elements.

Differences across datasets are most evident in the intensity of specific relations. For example, H2 and
Hadoop (Figures 13 and 14) exhibit a higher number of relations between "Operation" and "Others" compared
to Dubbo and RDF4J (Figures 12 and 16), indicating that the former systems have more complex and
interconnected codebases.

Overall, these heatmaps illustrate the relational complexity within each dataset, highlighting the critical role
of "Operation" and "Others" categories in maintaining the structural integrity of the codebase. This complex-
ity presents challenges for graph-based models, which must effectively capture these dense interdependencies
to make accurate predictions.

23

Under review as submission to TMLR

Table 9: Validation MAPE for RelSC and Multi-RelSC datasets. We report “-” to indicate that the value
diverged.

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.97(±0.34) 0.74(±0.61) 0.58(±0.33) 1.61(±1.08) 0.26(±0.21) 0.73(±0.47)

AST Code2Vec 2.20(±0.51) 1.27(±0.25) 0.28(±0.62) - 0.62(±0.12) 0.62(±0.12)

RelSC

GCN 1.26(±0.12) 0.63(±0.07) 0.10(±0.03) - 0.54(±0.09) 0.59(±0.03)
Cheb 1.44(±0.17) 0.61(±0.04) 0.13(±0.04) - 0.55(±0.09) 0.58(±0.02)
GIN 1.19(±0.08) 0.55(±0.02) 0.11(±0.04) - 0.51(±0.07) 0.61(±0.11)
GraphSAGE 1.32(±0.06) 0.67(±0.06) 0.11(±0.03) - 0.45(±0.01) 0.51(±0.10)
PNA 1.01(±0.12) 0.51(±0.08) 0.08(±0.01) - 0.42(±0.05) 0.44(±0.09)

Multi-RelSC HeteroSage 1.85(±0.53) 0.84(±0.05) 1.09(±0.60) - 1.89(±1.72) -
HeteroGAT 1.40(±0.15) 0.79(±0.05) 0.21(±0.01) 1.01(±0.09) 0.55(±0.11) 0.61(±0.08)

Table 10: Test Spearman’s Rank Correlation Coefficient (ρ) for RelSC and Multi-RelSC datasets (higher is
better).

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.55(±0.23) 0.58(±0.21) 0.31(±0.09) 0.19(±0.11) 0.08(±0.02) 0.14(±0.03)

AST Code2Vec 0.33(±0.07) 0.26(±0.06) 0.25(±0.26) −0.12(±0.15) 0.03(±0.21) 0.48(±0.08)

RelSC

GCN 0.61(±0.03) 0.52(±0.03) 0.67(±0.04) 0.28(±0.09) 0.32(±0.32) 0.59(±0.03)
Cheb 0.64(±0.04) 0.50(±0.05) 0.74(±0.17) nan 0.49(±0.04) 0.52(±0.03)
GIN 0.64(±0.03) 0.53(±0.02) 0.67(±0.08) 0.23(±0.09) 0.23(±0.35) 0.55(±0.05)
GraphSAGE 0.57(±0.02) 0.38(±0.05) 0.77(±0.06) nan 0.41(±0.08) 0.56(±0.04)
PNA 0.71(±0.02) 0.57(±0.01) 0.68(±0.00) 0.48(±0.05) 0.51(±0.00) 0.68(±0.03)

Multi-RelSC HeteroSage 0.21(±0.21) 0.20(±0.07) −0.34(±0.08) 0.02(±0.31) 0.13(±0.47) 0.24(±0.18)
HeteroGAT 0.50(±0.11) 0.32(±0.07) 0.24(±0.31) 0.22(±0.27) 0.41(±0.17) 0.40(±0.04)

Table 11: Validation Spearman’s Rank Correlation Coefficient (ρ) for RelSC and Multi-RelSC datasets
(higher is better).

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.62(±0.15) 0.56(±0.13) 0.44(±0.09) 0.67(±0.18) 0.33(±0.03) 0.81(±0.21)

AST Code2Vec 0.43(±0.02) 0.40(±0.06) 0.43(±0.03) 0.28(±0.06) 0.36(±0.05) 0.52(±0.03)

RelSC

GCN 0.59(±0.03) 0.54(±0.02) 0.60(±0.14) 0.52(±0.06) 0.29(±0.03) 0.50(±0.03)
Cheb 0.58(±0.03) 0.52(±0.06) 0.51(±0.17) nan 0.28(±0.03) 0.48(±0.01)
GIN 0.61(±0.02) 0.54(±0.02) 0.55(±0.18) 0.30(±0.34) 0.18(±0.05) 0.49(±0.02)
GraphSAGE 0.50(±0.02) 0.46(±0.04) 0.66(±0.06) nan 0.26(±0.04) 0.48(±0.03)
PNA 0.73(±0.01) 0.55(±0.02) 0.69(±0.01) 0.58(±0.01) 0.48(±0.04) 0.66(±0.01)

Multi-RelSC HeteroSage 0.31(±0.09) 0.26(±0.05) −0.10(±0.38) 0.21(±0.12) 0.07(±0.09) 0.19(±0.07)
HeteroGAT 0.50(±0.05) 0.33(±0.05) 0.14(±0.23) 0.30(±0.08) 0.26(±0.11) 0.42(±0.05)

Table 12: Test MRE for RelSC and Multi-RelSC datasets (lower is better)

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 42(±25) 58(±48) 75(±61) 83(±11) 51(±9) 929(±81)

AST Code2Vec 3(±1) 1948(±239) 15(±9) 7(±4) 5373(±629) 1823(±148)

RelSC

GCN 19(±2) 3(±0) 2(±0) 3(±1) 2(±1) 5(±0)
Cheb 22(±3) 3(±2) 1(±0) 4(±1) 2(±0) 5(±1)
GIN 18(±2) 3(±0) 1(±0) 3(±1) 2(±1) 6(±0)
GraphSAGE 15(±3) 4(±1) 1(±0) 4(±0) 1(±0) 4(±0)
PNA 11(±2) 3(±0) 1(±0) 7(±4) 1(±0) 3(±0)

Multi-RelSC HeteroSage 23(±8) 5(±1) 33(±3) 42(±26) 73(±11) 30(±27)
HeteroGAT 13(±2) 3(±0) 1(±1) 8(±4) 3(±2) 5(±0)

24

Under review as submission to TMLR

Table 13: Validation MRE for RelSC and Multi-RelSC datasets (lower is better)

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 79(±34) 61(±21) 31(±18) 122(±83) 13(±11) 38(±15)

AST Code2Vec 6819(±814) 511(±101) 5953(±363) 705(±23) 5366(±226) 3076(±211)

RelSC

GCN 107(±32) 5(±0) 1(±0) 3(±1) 2(±1) 9(±1)
Cheb 118(±12) 5(±0) 1(±0) 4(±0) 2(±0) 9(±2)
GIN 79(±23) 6(±0) 1(±0) 3(±1) 2(±0) 10(±2)
GraphSAGE 87(±13) 5(±0) 1(±0) 4(±0) 2(±0) 7(±1)
PNA 51(±2) 3(±1) 1(±0) 3(±4) 1(±0) 6(±0)

Multi-RelSC HeteroSage 74(±26) 4(±1) 3(±2) 13(±10) 5(±3) 29(±12)
HeteroGAT 67(±14) 3(±0) 1(±0) 2(±0) 2(±0) 14(±3)

Figure 8: Node Category Distribution for
Multi-RelSC RDF4J dataset

Figure 9: Node Category Distribution for
Multi-RelSC SystemDS dataset

Figure 10: Node Category Distribution for
Multi-RelSC H2 dataset

Figure 11: Node Category Distribution for
Multi-RelSC Dubbo dataset

25

Under review as submission to TMLR

Node type Description Category

AnnotationMethod Defines a method used in annotations, often to specify default values for elements declarations
InferredFormalParameter A formal parameter whose type is inferred by the compiler, often in lambda expressions declarations
LocalVariableDeclaration Declares a variable within a method, constructor, or block, with local scope declarations
SuperConstructorInvocation Calls the constructor of the superclass from a subclass constructor expressions_and_operations
Import Imports classes or entire packages to make them available for use in a Java file code_structure
ArraySelector Used to select an element from an array using its index types_and_references
BreakStatement Terminates the nearest enclosing loop or switch statement control_flow
FieldDeclaration Declares a variable at the class level, which can be accessed by methods of the class declarations
EnumDeclaration Declares an enumeration, a special Java type used to define collections of constants declarations
ConstructorDeclaration Declares a constructor, a special method to create and initialize objects of a class declarations
Annotation A form of metadata that provides data about a program code_structure
ReferenceType Specifies a type that refers to objects, such as classes, arrays, or interfaces types_and_references
EnhancedForControl Control structure used to iterate over collections or arrays in a simplified way control_flow
TypeParameter Represents a generic parameter in a class, interface, or method declarations
Statement A single unit of execution within a Java program, such as a declaration or expression control_flow
CompilationUnit Represents an entire Java source file, including package, imports, and class code_structure
EnumConstantDeclaration Declares constants within an enum type literals_and_constants
IfStatement A conditional statement that executes code based on a true or false condition control_flow
ClassCreator Creates an instance of a class, possibly an inner or anonymous class code_structure
SwitchStatement Selects one of many code blocks to execute based on the value of an expression control_flow
EnumBody Defines the body of an enum, including constants and other fields or methods code_structure
PackageDeclaration Declares the package that a Java class or interface belongs to code_structure
Cast Converts an object or value from one type to another types_and_references
VariableDeclaration Declares a variable, specifying its type and optional initial value declarations
ArrayCreator Creates a new array with a specified size and type types_and_references
This Refers to the current instance of a class types_and_references
MethodReference Refers to a method by name without executing it, often used in lambda expressions expressions_and_operations
InnerClassCreator Creates an instance of an inner class code_structure
InterfaceDeclaration Declares an interface, which can contain method signatures and constants declarations
FormalParameter Declares a parameter in a method or constructor declarations
CatchClauseParameter A parameter used in the catch block to represent an exception exceptions
SynchronizedStatement Ensures that a block of code is executed by only one thread at a time control_flow
VoidClassReference Refers to the special ‘void‘ type, representing the absence of a return value types_and_references
TypeArgument An actual type passed as a parameter to a generic type types_and_references
DoStatement Executes a block of code at least once, then repeatedly based on a condition control_flow
Assignment Assigns a value to a variable expressions_and_operations
ContinueStatement Skips the current iteration of a loop and proceeds to the next iteration control_flow
AssertStatement Tests an assertion about the program, throwing an error if the assertion fails exceptions
ExplicitConstructorInvocation Explicitly calls another constructor in the same class or a superclass declarations
AnnotationDeclaration Declares an annotation type, used to create custom annotations declarations
StringLiteralExpr Represents a literal string value in the code literals_and_constants
PrimitiveType Represents a primitive data type such as int, char, or boolean types_and_references
TryStatement Defines a block of code that attempts execution and handles exceptions control_flow
ElementArrayValue Represents an array of values in an annotation element code_structure
BlockStatement Groups multiple statements together in a block enclosed by braces code_structure
ClassReference Refers to a class, often using its fully qualified name types_and_references
ReturnStatement Terminates a method and optionally returns a value control_flow
IntegerLiteralExpr Represents a literal integer value in the code literals_and_constants
TernaryExpression A shorthand conditional expression expressions_and_operations
VariableDeclarator Declares a variable and its initial value in one statement declarations
BinaryOperation Represents an operation involving two operands, such as addition or comparison expressions_and_operations
ClassDeclaration Declares a class, including its name, superclass, and body declarations
TryResource Represents a resource in a try-with-resources statement that is automatically closed exceptions
MemberReference Refers to a member of a class, such as a field or method expressions_and_operations
SuperMemberReference Refers to a member in the superclass of the current class expressions_and_operations
Literal Represents a literal value, such as a number, character, or boolean literals_and_constants
CatchClause Handles exceptions thrown in a try block exceptions
WhileStatement Executes a block of code repeatedly based on a condition control_flow
ElementValuePair Represents a key-value pair in an annotation code_structure
ForStatement Defines a traditional for loop with initialization, condition, and iteration control_flow
StatementExpression Represents an expression that can stand as a statement expressions_and_operations
ConstantDeclaration Declares a constant, which is a variable whose value cannot be changed declarations
ArrayInitializer Specifies the initial values for an array types_and_references
MethodInvocation Invokes a method on an object or class expressions_and_operations
Modifier Defines modifiers for classes, methods, or fields, such as public, private, or static declarations
ThrowStatement Throws an exception, signaling an error or abnormal condition control_flow
LambdaExpression Represents an anonymous function expressions_and_operations
SwitchStatementCase Represents a case label in a switch statement, matching specific values code_structure
MethodDeclaration Declares a method, including its return type, name, and parameters declarations
BasicType Represents a basic data type such as int, float, or char types_and_references
SuperMethodInvocation Invokes a method from the superclass of the current class expressions_and_operations
ForControl Specifies the initialization, condition, and update parts of a for loop control_flow
CompilationUnit Represents the top-level node in AST produced by the parser as the root of the tree declarations

Table 14: Conversion table from NodeType to Category

26

Under review as submission to TMLR

Figure 12: Average number of relations for
dataset Multi-RelSC Dubbo

Figure 13: Average number of relations for
dataset Multi-RelSC H2

Figure 14: Average number of relations for
dataset Multi-RelSC Hadoop

Figure 15: Average number of relations for
dataset Multi-RelSC OssBuilds

Figure 16: Average number of relations for
dataset Multi-RelSC RDF4J

Figure 17: Average number of relations for
dataset Multi-RelSC SystemDS

27

Under review as submission to TMLR

F Additional Graph Statistics

This section provides additional statistics for an overview of the proposed datasets. Figures 18 and 19 show
two RelSC and two Multi-RelSC networks for Hadoop and OssBuilds, respectively.

Figure 18: Example of RelSC and Multi-RelSC graphs from Hadoop

In Table 15, we present the means and standard deviations of several key graph metrics calculated for the
proposed datasets. Specifically, we report the average density, indicating the proportion of actual connections
to possible connections within each graph. We also include the average degree, reflecting the mean number
of connections per node, and the average clustering coefficient, which describes the tendency of nodes to form
tightly connected groups. Additionally, we provide the average diameter, representing the longest shortest
path between any two nodes, and the average path length, capturing the mean shortest path across all node
pairs. Lastly, we report the degree assortativity, which measures the correlation in degree between connected
nodes.

Dataset Density Degree Clustering Diameter Path Length Assortativity
SystemDS 0.010 (± 0.023) 3.80 (± 0.06) 0.29 (± 0.02) 18.3 (± 4.5) 7.6 (± 1.3) 0.12 (± 0.06)
Dubbo 0.026 (± 0.047) 3.80 (± 0.12) 0.31 (± 0.04) 13.9 (± 3.7) 6.7 (± 1.4) 0.15(± 0.09)
RDF 0.041 (± 0.046) 3.78 (± 0.14) 0.30 (± 0.03) 12.7 (± 5.7) 5.9 (± 2.1) 0.17(± 0.08)
H2 0.005 (± 0.005) 3.82 (± 0.05) 0.33 (± 0.02) 22.1 (± 9.1) 8.6 (± 1.9) 0.11 (± 0.08)
OSSBuilds 0.027 (± 0.041) 3.79 (± 0.12) 0.31 (± 0.03) 15.6 (± 7.3) 6.8 (± 2.2) 0.15 (± 0.08)
Hadoop 0.011 (± 0.018) 3.82 (± 0.06) 0.30 (± 0.02) 17.3 (± 11.7) 7.5 (± 3.1) 0.12 (± 0.07)

Table 15: Dataset Statistics: Mean Values with Standard Deviations

28

Under review as submission to TMLR

Figure 19: Example of RelSC and Multi-RelSC graphs from OssBuilds

F.1 Metric Distributions

Figure 20 presents the degree distributions of the OssBuilds and Hadoop datasets. To enhance clarity
and make patterns in the distributions more visible, the y-axis is displayed on a logarithmic scale. This
adjustment highlights the spread of node degrees across a wide range, helping to capture variations that may
be less noticeable on a linear scale.

Figure 20: Degree distributions of OssBuilds (left) and Hadoop (right)

29

Under review as submission to TMLR

G Dataset Diversity and Bias Mitigation

To address concerns about the quality and representativeness of our dataset, we provide a detailed analysis of
the diversity of code samples and the steps taken to mitigate potential biases in the data collection process.
Our dataset comprises code from five distinct open-source projects collected through two different sources
and methods, ensuring a broad coverage of code patterns and complexities relevant to software performance
prediction tasks.

G.1 Diversity of Code Samples

Our dataset includes code from the following projects:

• OSSBuilds Dataset: This dataset encompasses four open-source projects, each contributing
unique code patterns due to their different functionalities:

– SystemDS: An Apache machine learning system for the data science lifecycle.
– H2: A Java SQL database engine.
– Dubbo: An Apache remote procedure call (RPC) framework.
– RDF4J: A framework for scalable RDF data processing.

These projects introduce a variety of code patterns, including database management, machine learn-
ing algorithms, RPC mechanisms, and data processing workflows. The diversity is reflected in the
structural variations of the code and the resulting graphs.

• HadoopTests Dataset: Derived from the Apache Hadoop framework, this dataset includes 2,895
test files. Hadoop is renowned for processing large datasets across distributed computing environ-
ments, contributing complex code structures and control flows to our dataset.

Table 1 illustrates that the average number of nodes in the HadoopTests dataset is almost double that of
the OSSBuilds dataset (1,490 vs. 875 nodes), indicating higher complexity in the Hadoop code samples.
This indicates that our dataset has two main characteristics: the diversity of the code patterns and the
complexity.

G.2 Mitigation of Potential Biases

To minimize biases in our data collection process, we employed two different methods and environments:

• OSSBuilds Data Collection: Execution times were collected from the continuous integration
(CI) systems of the respective projects using GitHub’s shared runners. This approach leverages a
standardized environment provided by the CI infrastructure, reducing variability due to hardware
differences.

• HadoopTests Data Collection: We conducted multiple executions of Hadoop’s unit tests on
dedicated virtual machines within our private cloud. Each VM was configured with two virtual CPUs
and 8 GB of RAM, and all non-essential services were disabled to ensure consistent performance
measurements.

By diversifying our data sources and controlling the execution environments, we mitigated potential biases
related to hardware configurations, workload fluctuations, and environmental inconsistencies.

G.3 Representativeness and Generalization

The inclusion of diverse projects with varying functionalities enhances the representativeness of our dataset.
The code samples encompass different structures, control flow statements, and data dependencies, which
are critical for modelling software performance. The resulting graphs are generalized to various coding

30

Under review as submission to TMLR

patterns, excluding interface files that primarily contain function declarations without executable code. We
intentionally did not include call graphs in the augmentation of ASTs to focus on the executable aspects of
the code, which are more indicative of performance characteristics.

H Target values distributions

In this section, we present the distribution of target values for SystemDS, H2, Dubbo, and RDF4J, which
are subprojects of OssBuilds. The distributions are shown in Figure 21.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
eq

ue
nc

y

Target values in RDF4J
Mean

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fr
eq

ue
nc

y
Target values in SystemDS

Mean

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fr
eq

ue
nc

y

Target values in H2
Mean

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fr
eq

ue
nc

y

Target values in Dubbo
Mean

Figure 21: Distribution of target values for SystemDS, H2, Dubbo, and RDF4J, subprojects of OssBuilds.

31

	Introduction
	Related Work
	Preliminaries
	Abstract Syntax Trees
	Control Flow Graph (CFG)
	Data Flow Graph (DFG)
	Graph Neural Network

	Proposed Datasets
	Data Collection
	OSSBuild Dataset
	HadoopTests Dataset

	AST Construction
	From AST to RelSC
	From RelSC to Multi-RelSC

	Datasets Statistics
	Distribution of Node Types
	Target values

	Experiments
	Implementation Details and Evaluation
	Results
	Discussion
	Ablation Study

	Real-World Applications
	Data Release
	Conclusion
	Licensing and Ethical Statement
	Additional Metrics and validation results
	Node Types
	Node Category of the Datasets
	Relations on the Datasets
	Additional Graph Statistics
	Metric Distributions

	Dataset Diversity and Bias Mitigation
	Diversity of Code Samples
	Mitigation of Potential Biases
	Representativeness and Generalization

	Target values distributions

